Pro konstrukci procesorů je třeba pochopit procesy při dopování grafenu (inzerci či extrakci elektronů) a při přenosu náboje mezi jeho vrstvami. Na objevech týkajících se grafenu se podíleli i čeští vědci Ústavu fyzikální chemie J. Heyrovského.
Odborníci z norské společnosti CrayNano udělali krok, který by mohl otevřít cestu nové generaci polovodičových součástek. Vědci se naučili vypěstovat na grafenovém podkladu vlákna arsenidu galia (GaAs), který funguje jako polovodič.
Patentovaný hybridní materiál má vynikající optoelektronické vlastnosti . Jedním ze zakladatelů společnosti CrayoNano je rovněž společnost Chief Technology Officer. Nový materiál charakterizují nízké výrobní náklady, optická transparentnost a mechanická pružnost.
Aby vědci docílil růst polovodičových vláken na povrchu grafenu, použili tecniku molekulární epitaxe[1]. Rysem této technologie založené na epitaxním růstu v ultra čistém vakuu je požadavek, aby měl substrát na atomární úrovni vysokou čistotu a hladký povrch. To grafen splňuje a proto je možné jej použít jako substrát a to nejen u GaAs.
Číst dál: Norští vědci vypěstovali polovodičové vlákno na substrátu grafenu
Jako nanotechnologie se obecně označuje technický obor, který se zabývá tvorbou a využíváním technologií v měřítku řádově nanometrů (obvykle cca 1–100 nm), tzn. 10−9 m (miliardtiny metru), což je přibližně tisícina tloušťky lidského vlasu. Jedná se rovněž o studium možnosti manipulace se hmotou v atomárním a molekulárním měřítku, přičemž se uplatňují kvantově-mechanické jevy, které se diametrálně vymykají chápání světa v makroskopickém měřítku. Díky těmto jevům, které popisuje kvantová fyzika, se otevírají nové perspektivy v oblasti magnetických záznamových mediích, výpočetní technice, elektronice, optice a dalších vědních oblastech.
Nanostruktury, tzn. oblast částic a struktur o rozměrech mezi 1 nm až 100 nm, považujeme za základní stavební jednotky nanomateriálů. Zkoumáním jejich vlastností se pak zabývá nanověda. Její hranice se však nedá zcela přesně vymezit. Zahrnuje oblasti fyziky pevných látek, chemie, inženýrství i molekulární biologie. Nanotechnologie bychom potom mohli definovat jako interdisciplinární a průřezové technologie, zabývající se praktickým využitím nových a neobvyklých vlastností nanomateriálů pro konstrukci nových struktur, materiálů a zařízení.
Jako jeden ze zakladatelů nanotechnologie (třebaže ještě nepoužil toho slova) je označován Richard Feynman, který základní myšlenky představil ve své slavné přednášce nazvané Tam dole je spousta místa (There's Plenty of Room at the Bottom), kterou v roce 1959 přednesl na výroční schůzi Americké společnosti fyziků pořádané na Caltechu.
Využití nanotechnologií a nanomateriálů je velmi rozsáhlé. Již v současnosti nalézají uplatnění v mnoha oblastech běžného života jako je elektronika (paměťová média, spintronika, bioelektronika, kvantová elektronika), zdravotnictví (cílená doprava léčiv), strojírenství (supertvrdé povrchy s nízkým třením, samočisticí nepoškrabatelné laky),
chemický průmysl (nanotrubice, nanokompozity, selektivní katalýza, aerogely), elektrotechnický průmysl (vysokokapacitní záznamová média, fotomateriály, palivové články), optický průmysl (optické filtry, fotonické krystaly a fotonická vlákna, integrovaná optika), automobilový průmysl, kosmický průmysl (katalyzátory, odolné povrchy satelitů),
vojenský průmysl (nanosenzory, konstrukční prvky raketoplánů), životní prostředí (biodegradace).
Příklady kvantových jevů
Pokud se pára sestávající ze stovek tisíc atomů rubidia zchladí na miliontinu stupně nad absolutní nulu (−273 °C) a stlačí se dohromady pomocí magnetického pole, spojí se atomy do tzv. Bose-Einsteinova kondenzátu. Kvantoví optici z Mnichova dokáží takovouto řadu uspořádat do trojrozměrné sítě ze stojatých laserových vln a manipulovat s ní, například učinit světelnou past tak silnou, že se jednotka bloku rozpadne na Mottův kondenzát. Tato práce byla oceněna Nobelovou cenou za fyziku v roce 2001. Výzkum tohoto druhu naplňuje životem kvantovou teorii a ta má v nanokosmu hlavní slovo. Kdo jí přesně porozumí, může například vyvinout přesnější časové standardy. Přesnější hodiny mohou zase pomoci urychlit datový provoz na internetu.
Mezi hojně využívané kvantové jevy se rovněž řadí tunelový jev, na jehož principu je založen řádkovací tunelový mikroskop.
Nanotechnologie v elektronice
V posledních letech je vyvíjeno enormní úsilí v oblasti základního výzkumu, zejména v oblasti nanoelektroniky. Za objev jevu obří magnetické rezistence (GMR) získali v roce 2007 Nobelovu cenu za fyziku Albert Fert a Peter Grünberg. Jedná se o ovlivňování elektrického odporu látky interakcí spinu elektronu s magnetizací materiálu v nanostrukturách. Tento objev nalezl praktické využití při konstrukci počítačových pamětí nové generace, senzorů nové generace při nádorových onemocněních mozku, proudových senzorů nebo tenzometrů.